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LunaH-Map Concept of Operations Instruments

Burn to lunar

LunaH-Map: Revealing Hydrogen
Distributions at the Moon’s Pole

* Lunar spacecraft have used neutron detectors, near-infrared
spectrometers and impactors to reveal the presence of hydrogen (H)
throughout the lunar surface. At the lunar poles hydrogen abundances
commonly exceed 150 ppm, and abundances could be as high as
20-40 wt.% water-equivalent-hydrogen within certain permanently
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