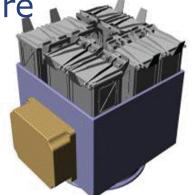
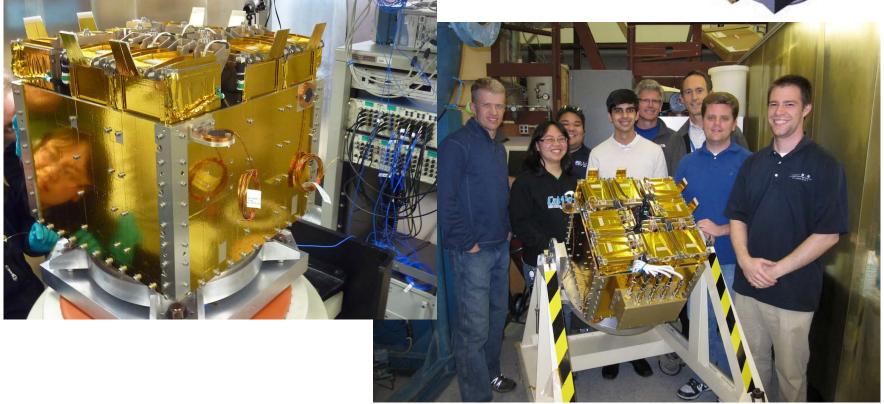

Approaches to Interplanetary Rideshare Accommodations for CubeSats/SmallSats

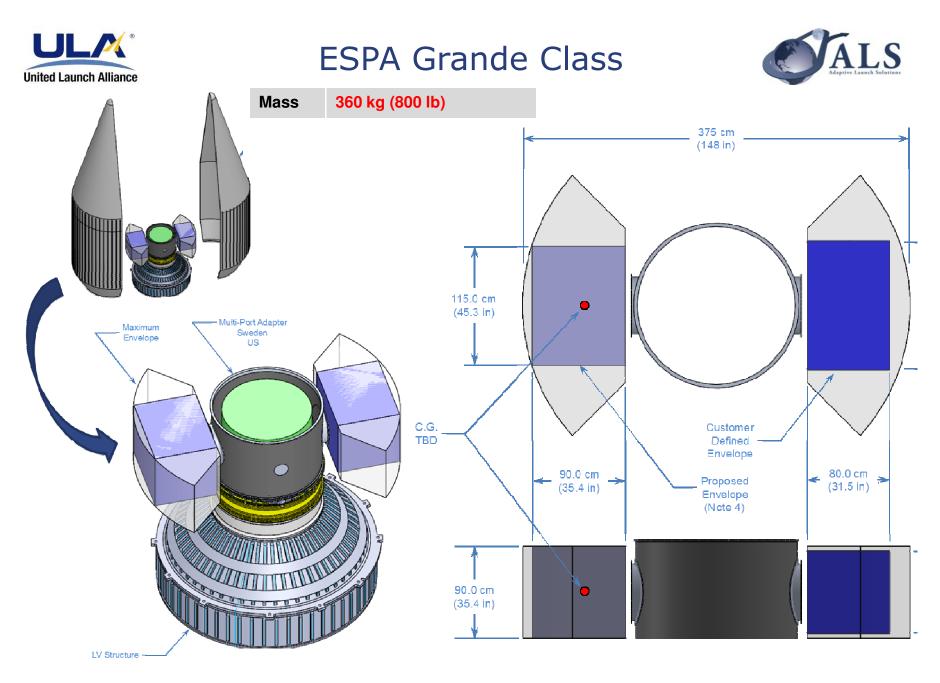
Interplanetary SmallSat Conference hosted by Santa Clara University, CA

Jake Szatkowski, phd. gerard.p.szatkowski@ULAlaunch.com APR 27-28, 2015

Copyright © 2011 United Launch Alliance, LLC. All Rights Reserved.

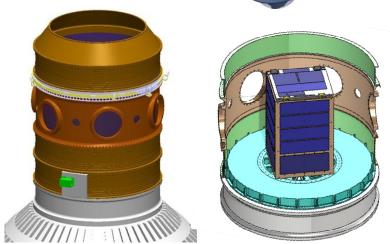

Delivering a Wide Range of Small Spacecraft with the Appropriate Conops and Technical Accommodations

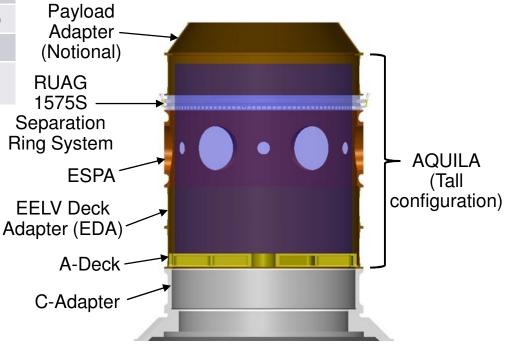

ESPA Graphic courtesy of CSA Engineering, Inc
 COTSAT courtesy of NASA/AMES
 NPSCuL courtesy of NPS
 A-Deck courtesy of Adaptive Launch Solutions


NPSCuL Missions picking up the pace for Rideshare

- □ L-36/OUTSat Launched SEP 2012 (first-flight)
- □ L-39/GEMSat Launched DEC 2013
- □ Next: L-55/GRACE, AFSPC-5/ULTRASat in CY15

Photos courtesy Maj. Wilcox NRO/OSL

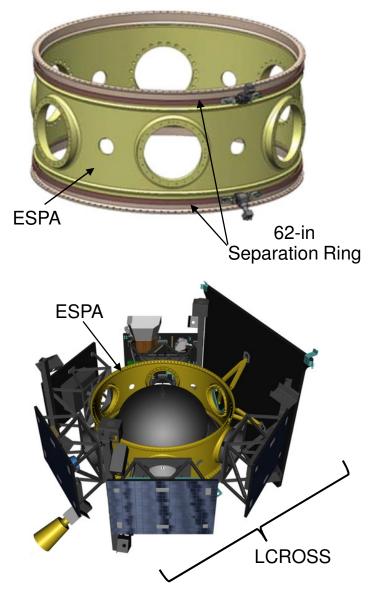

AQUILA



AQUILA					
Description	A flat deck and cylindrical spacers, located between the forward-end of the second stage and the primary payload				
Vehicle	Atlas V, Delta IV				
Capacity	Multiple payloads per AQUILA				
Interface	Variable				
Mass	1,000 kg (2,200 lb)				
Volume	142-cm dia. (56-in dia.) x 152 cm (60 in)				
Status	In development; CDR 04-2012				
Developer	Adaptive Launch Solutions (ALS) (Jack Rubidoux, jrubidoux@adaptivelaunch.com)				

Graphics courtesy of ALS

AQUILA modular adapters are rated to support a primary payload mass up to 6,350 kg (14,000 lb)


Separating ESPA

Lunar CRater Observation and Sensing Satellite LCROSS

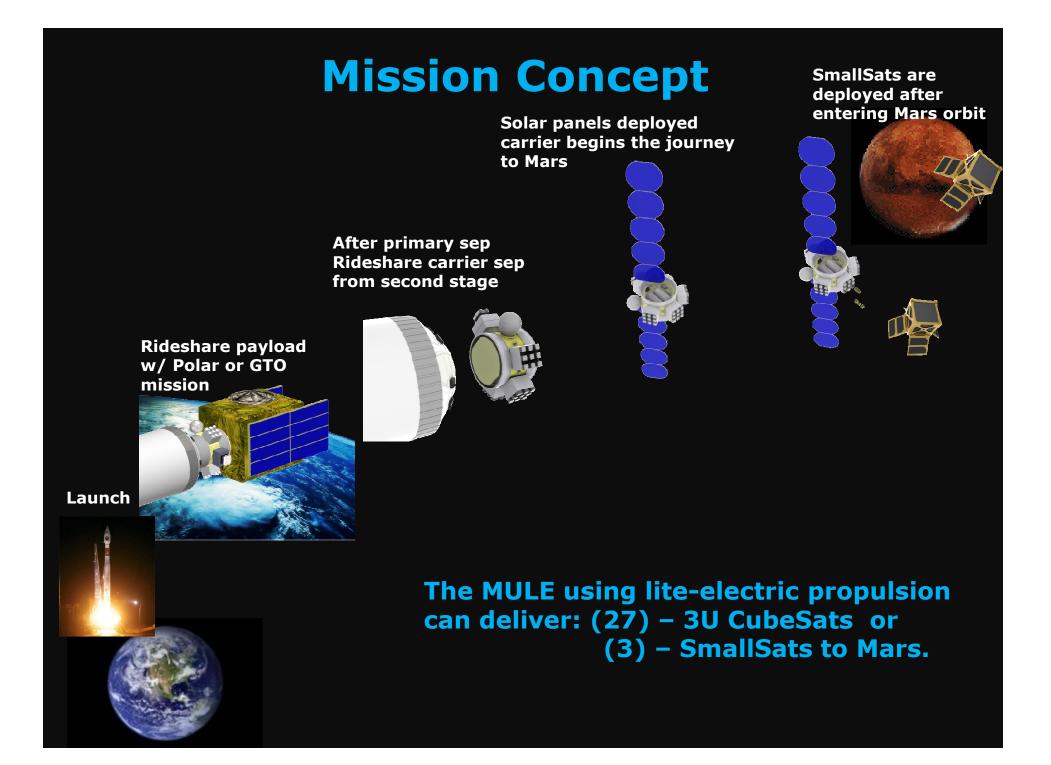
Separating ESPA						
Description	A separating rideshare payload that uses the ESPA ring as the structural bus of the satellite					
Vehicle	Atlas V, Delta IV					
Capacity	Variable					
Interface	62-in Bolted Interface					
Mass	1,360 kg (3,000 lb)					
Volume	350-cm dia. x 61 cm (138-in dia. x 24 in)					
Status	Operational; first launch 06-2009 on LRO/LCROSS					
Developer	Moog CSA Engineering (Joe Maly, jmaly@csaengineering.com)					

A separating ESPA can use various separation ring hardware solutions from a number of vendors to separate from the ULA launch vehicle

MULE Third Stage (Multi-payload Utility Lite Electric)

MULE stage provides high deltaV to perform delivery of ESPA class payloads to a variety of orbits and Earth Escape missions

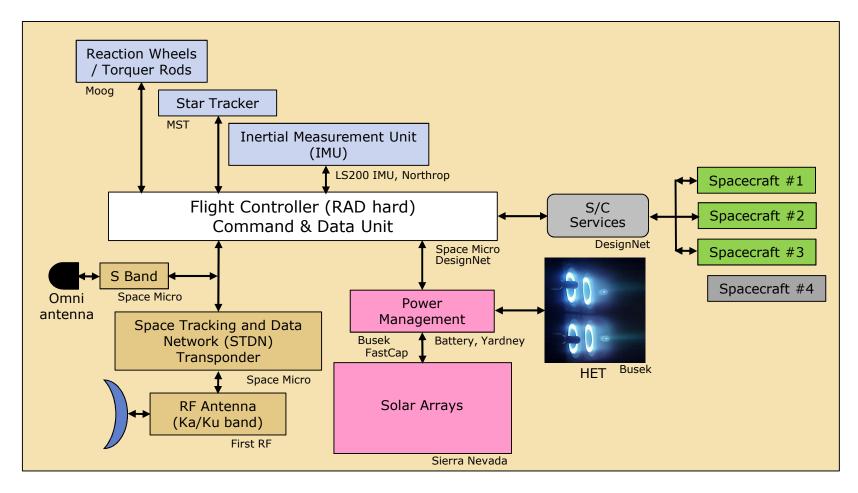
- Delivery to Earth Escape (Lunar, NEO, Mars)
- Delivery of a constellation (3 ESPA S/C)
- Solar Electric propulsion
- >10 m/s delta-V
- Laser comm or high-gain antenna Avionics
- On-orbit operations multi-yr
- Potential to add another ESPA


□ Co-sponsors:

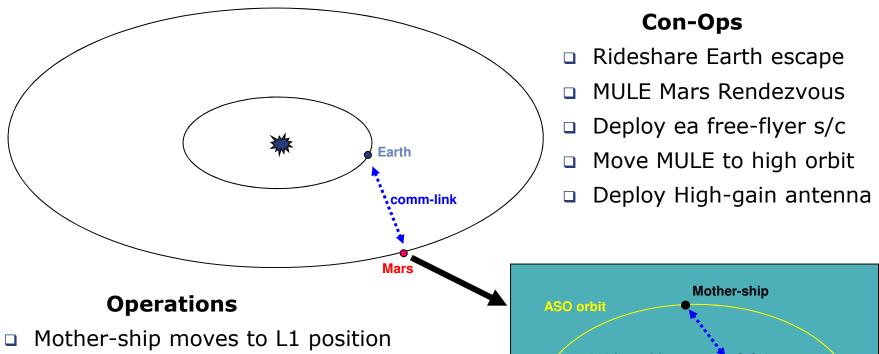
- Busek Space Propulsion (Hall Thrusters)
- Adaptive Launch Solutions (S/C Integration)
- Oakman Aerospace (Avionics)
- Specs: 1400 kg wet mass w/o payloads
 2400 kg wet w/ (4) 180 kg payloads

ULA Patent

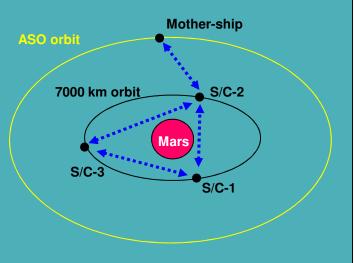
Propulsion



MULE System Architecture


□ Flt-proven, Fault tolerant, RAD hard avionics suite

□ ESPA-Class Spacecraft accommodations



Mars "TDRSS-lite" Delivery

- MULE Stage switches power to high-gain
- Permits comm links:
 - Surface to Surface
 - Surface to Earth
 - Continuous surface observation
 - Internet-like service

UL Thruster Performance and Delta-V Comparison Space United Launch Alliance and Systems

							_
lodine	Gas	Power	Thrust	T/P	Anode Isp	Anode Eff	
recarro		(W)	(mN)	(mN/kW)	(s)	(-)	
	12	155	11.1	71	1110	0.39	
	Xe	156	11.2	72	1151	0.41	
Manager and the second second second	12	211	14.3	68	1436	0.48	
Xenon	Xe	203	13.5	67	1394	0.46	
Xenon	12	133	8.3	62	1350	0.41	
	Xe	134	8.0	60	1409	0.41	
	12	187	12.1	65	1506	0.48	
BHT-200	Xe	193	11.9	62	1544	0.47	

Table indicate that iodine is a drop-in replacement for xenon.

It's high storage density has the potential to yield a significant increase in spacecraft delta-V, when propellant volume is restricted. This is illustrated by using the rocket equation and assuming a fixed propellant volume and dry mass. With iodine (Table 1) the delta-V increases by a factor of 2.4 with respect to Xe allowing the iodine fueled MULE to take payloads from GTO/Polar to Mars, Venus, or an Asteroid, using low-pressure, conformal, composite fuel tanks.

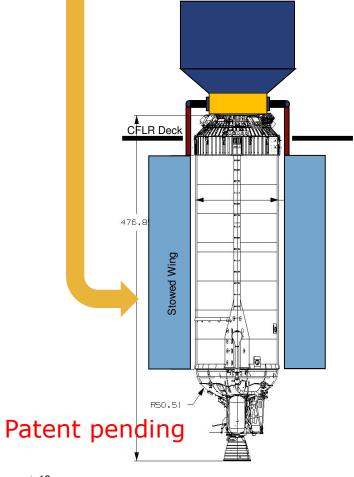
Gas	Units	lodine	Xenon
Storage Density	g/cc	4.9	1.6
Specific Impulse	S	1909	1882
Propellant Mass	Kg	1225	400
Dry Mass of a typical S/C for 1500 W HET	Kg	1300	1300
Final Mass / Initial Mass	-	0.51	0.76
Delta-V	Km/s	12.4	5.0

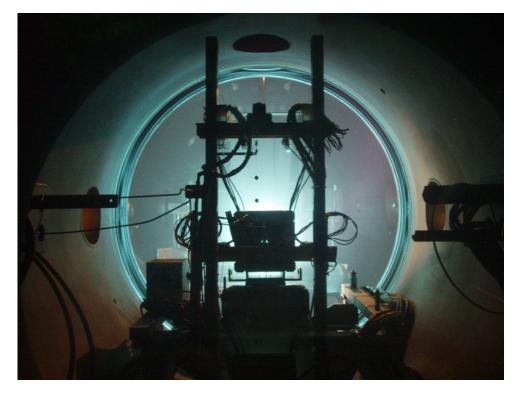
Future Interplanetary Missions

- □ Example mission: DMSP-19 (flew APR 2014)
 - □ S/C wt 2559 lbs
 - □ Atlas 401 (4m fairing, no solids)
 - □ Single injection burn 460 NM circular polar
 - Disposal burn to Earth Escape
 - Un-used performance to a C3 of $0 > \sim 3000$ lb (**1360 kg**)
 - □ Addition of 1 solid (+1900 kg performance)
 - Would have enable Mars MULE mission w/ 3 ESPA payloads (need 2400 kg for the MULE system wet & loaded
- Potential missions for Rideshare? (protected dates)

WR	WV	(CY16)
	DMSP	(ILC CY17-18)
	LDCM	(CY19)
	Weather FO	(CY21)
🗆 ER	GPS IIF	(CY16)
	GEO	(CY17)
	TDRS	(CY18)
11	GEO	(CY20)

- ULA's Atlas V and Delta IV launch vehicles have multiple configurations based on the number of solid rocket motors (SRMs) flown
- For both current missions, or when designing a new rideshare mission, the addition of an SRM can provide an appreciable amount of mass capability to orbit, as shown below


		All values are in kg					
ORBIT	VEHICLE	0 SRMs	1 SRM	2 SRMs	3 SRMs	4 SRMs	5 SRMs
GTO (35,786 X 185 km @ 27.0 deg)	Atlas V 4-m	- 4,750	+ 1,200 5,950	+ <i>940</i> 6,890	<i>+ 810</i> 7,700		
	Atlas V 5-m	- 3,780	+ 1,470 5,250	+ 1,230 6,480	+ <i>970</i> 7,450	+ <i>840</i> 8,290	<i>+ 610</i> 8,900
	Delta IV 4-m	- 4,210		6,160 <i>+ 1,950</i>			
	Delta IV 5-m			- 5,080		+ 1,810 6,890	
LEO Polar (200 km circular @ 90 deg)	Atlas V 4-m	- 8,080	+ 1,900 9,980	<i>+ 1,160</i> 11,140	<i>+ 990</i> 12,130		
	Atlas V 5-m	- 6,770	+ <i>2,200</i> 9,060	<i>+ 2,100</i> 11,160	+ <i>1,720</i> 12,880	<i>+ 1,600</i> 14,480	+ <i>1,280</i> 15,760
	Delta IV 4-m	- 7,690		<i>+ 2,840</i> 10,530			
	Delta IV 5-m			- 9,610		+ <i>1,990</i> 11,600	



High Power System

Large KW stowed config.

Busek 20-kW Thruster at GRC VF5

Composite Beam Roll-up Array (COBRA)

Deployed Array Cell Surface Dimensions: 7m x 2m

COBRA Solar Array Design

- Lenticular composite face-sheet with integrated PV network stows rolled-up & deploys/retracts using simple mechanism
- Integral structural design provides high specific power, efficient stowage, and very low part count / cost
- Provides benefits of Rigid panel Shielding plus
 Flexibility / High Specific Power of blanket technologies
- Compatible with all Solar Cell technologies and Satellite Power Levels

COBRA Solar Array Performance

Metric	Performance				
PV Technology	ZTJ Luna	IMM4	IMM6		
Specific Power	177 W/kg	236 W/kg	302 W/kg		
Stowed Specific Volume	36 kW/m ³	38 kW/m ³	43 kW/m ³		
Power (two wings)	8.8 kW BOL	9.4 kW BOL	10.5 kW BOL		
Voltage	300V	300V	300V		
Deployed dimensions	2m x 7m	2m x 7m	2m x 7m		
Deployed Frequency	.7 Hz	.8 Hz	.9 Hz		

- Some of our missions (particularly polar ones) do Earth-escape disposal of the upper stage
- □ Some of the missions have fairly large margins
- □ It is possible to add up to 5 solids boosters (1000 lbs margin ea)
- □ It is possible to raise the apogee to beyond L1 for separation
- □ The primary will dictate the time of launch.
- However, if a Lunar/Mars exploration s/c could loiter long enough it could sync with orbital maneuvering for insertion.
- □ ULA can work to help broker rideshares with primary customers
- ULA can assist for specific mission applications
- ULA can assist in schedule/milestone planning
- New R&D developments are in-work
 - New disposal techniques that add margin coming on-line
 - New heavy solar array system available
 - New extended mission systems in development
 - New Vulcan rocket capabilities anticipated
 - New ACES upper stage capabilities anticipated

MULE Summary

- MULE stage built on ESPA ring and standard ULA separation system
- □ Total mass of the MULE stage with Primary (14,055lb SV) is ~19,500lb
- ~5kW solar array
- 4 of Busek 1.5kW thrusters on 2 gimbals
- GTO to Lunar transit time <140 days</p>
- Mars transit <3 years</p>
- □ ULA has been working w/ Busek Propulsion on the Hall Effect thruster
 - Iodine $I_{sp} = 1506$ for I_2 at 250 V, 200 W
- Iodine solution launches as a solid in lite-wt composite tank and sublimates with a low power heater, thus eliminating the need for heavy pressurized tanks
- □ Minimum development/delivery time first flight ~3 years
- □ EP Upper stage first-flight cost (including NRE) <\$50M
- Re-flight unit <\$30M</p>
- No significant technical challenge