Lunar Flashlight and NEA Scout Spring 2015 Overview

Travis Imken Systems Engineer, Jet Propulsion Laboratory, California Institute of Technology

With acknowledgements to the entire Lunar Flashlight and NEA Scout team

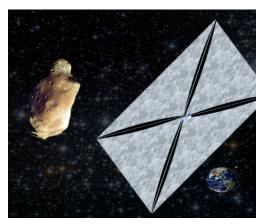
© 2015 California Institute of Technology. Government sponsorship acknowledged.

Lunar Flashlight and NEA Scout Introduction

- Lunar Flashlight and NEA Scout are two of NASA HEOMD's Advanced Exploration Systems (AES) payloads flying on SLS EM-1
- Primary selection criteria:
 - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs)
 - Life cycle cost
 - Synergistic use of previously demonstrated technologies
- Both missions are in Phase A

Payload NASA Centers	Strategic Knowledge Gaps Addressed	Mission Concept
Lunar Flashlight JPL/MSFC	 Lunar resource potential Quantity and distribution of water and other volatiles in lunar cold traps 	Locate ice deposits in the Moon's permanently shadowed craters
Near Earth Asteroid (NEA) Scout MSFC/JPL	 Human NEA mission target identification NEA size, rotation state (rate/pole position) How to work on and interact with NEA surface NEA surface mechanical properties 	Flyby/rendezvous and characterize one NEA that is candidate for a human mission

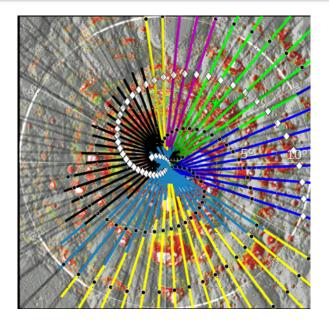
Why NEA Scout?

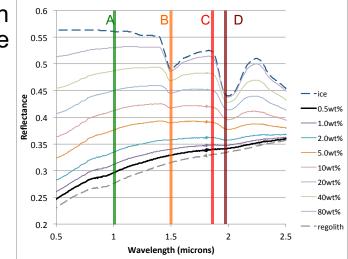

- Detect and rendezvous with a Near Earth Asteroid (NEA) target
 - Characterize the physical properties of the unresolved NEA target
 - Flyby and characterize the physical properties of the resolved NEA target
- **Measurements:** NEA volume, spectral type, spin mode and orbital properties, address key physical and regolith mechanical SKG
- ≥80% surface coverage imaging at ≤50 cm/px
- Spectral range: 400-900 nm (incl. 4 color channels)
- ≥30% surface coverage imaging at ≤10 cm/px

Key Technical Constraints:

- 30 month maximum mission duration
- Target must be within ~1 AU distance from Earth due to telecom limitations
- Slow flyby with target-relative navigation on close approach

Why Lunar Flashlight:


- Illuminate permanently-shadowed regions and detect water ice absorption bands in the near-infrared.
- Repeat this measurement over multiple points to create a map of surficial ice concentration that can be correlated to previous mission data

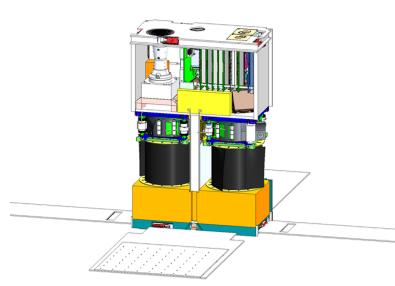

Measurements: *Lunar water ice in permanently shadowed cold craters.*

- Spectra (1-2 km spot, ground tracks), in 1-2 μm region using a JPL spectrometer
- Using the difference in reflected-light ratios, between dry and ice-bearing regolith, to indicate the presence and quantity of water ice
- Multiple passes over lunar south polar region with potential ice deposits.

Key Technical Constraints:

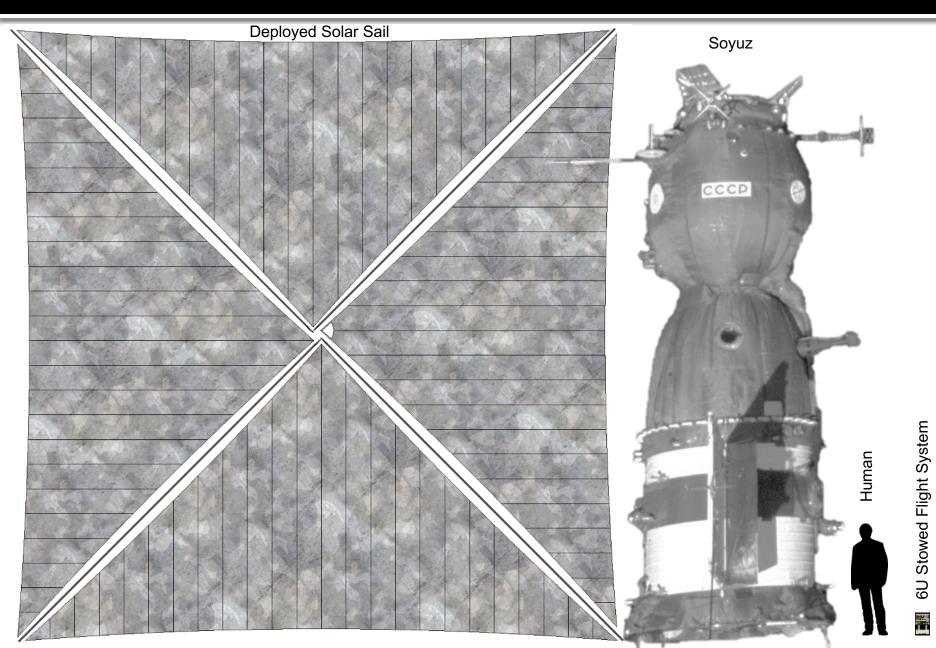
- 30 month maximum mission duration
- Solar sail acceleration limits
- Surface illumination strategies

Driving Design Features


- Both missions must survive 2.5 years
- Radiation mitigation and tolerance
- Thermal design and management
- Power generation and battery health
- Limited mass and volume resources

Deep Space Avionics

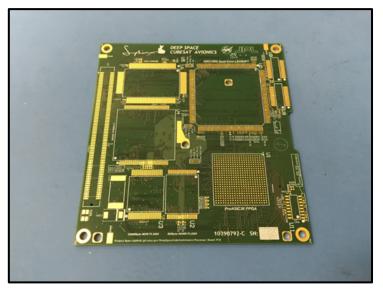
- C&DH Rad-tolerant LEON-3 architecture
- Power 35 to 45W power, 18650 batteries
- Comm Iris V2 deep space X-band transponder
 - 1 to 2 Kbps data rate depending on distance
- ACS Reaction wheels, SRU, IMU, sun sensors
- Propulsion COTS cold gas for TCM ΔV and desat


Solar Sail

- MSFC developed solar sail
- ~80m² area made up of four quadrants
- Deployer, booms, and sail contained within 2U
- Used for propulsion (both) and science (LF)

Updates since ISSC 2014

Milestones

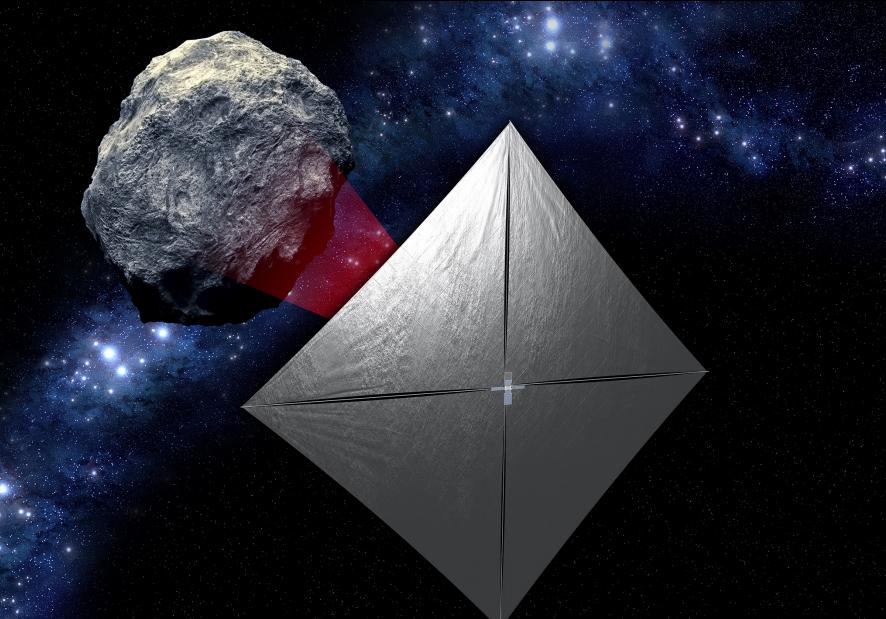

- Joint SRR/MCR in August '14
- Status review in January '15
- AES mid-year review in April '15

Improving the design

- Parts list review of JPL and COTS components, select radiation testing on critical items
- Maturation of passive thermal management for instruments and subsystems
- Refined CAD design for machinability, cable harnessing, and assembly strategies

Hardware developments

- CDH board ('Sphinx') assembled and being functionally verified
- Iris V2 is maturing for MarCO, some components in house and undergoing testing
- Compact packaging solutions for ACS components and RF assemblies
- Upcoming radiation and performance testing on candidate power boards



Looking Forward

- Phase 1 safety review (PDR level of maturity) in June '15
- FlatSat of electrical components will start to come together this FY
- Upcoming ACS component and software testing in the JPL Small Satellite Dynamics Testbed
- Expected SLS launch in 2018

