[Aerobraking](#page-10-0) **[Rings](#page-11-0)** [And Titan](#page-13-0) [Balloons](#page-18-0) [Conclusions](#page-21-0)

SmallSat **[Aerodynamics](#page-22-0)** Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0)

[Acknowledgments](#page-22-0)

UNIVERSITY of MICHIGAN = COLLEGE of ENGINEERING

Insights on Interplanetary Aerodynamic Environments for Small Spacecraft

First Interplanetary Small Satellite Conference

Derek J. Dalle (*University of Michigan*)

April 29, 2014

Spacecraft and Aerodynamics

And why these examples aren't too important for small spacecraft

SmallSat [Aerodynamics](#page-0-0) Dalle

[Introduction](#page-1-0)

[Atmospheric Entry](#page-4-0)

[Aerobraking](#page-10-0)

[And Titan](#page-13-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

Air-launched space access, this from the launch of Space Technology 5

Launch of STS-120

Atmospheric Entry:

Mars Exploration Rover entry

Recovery/Landing:

Practice recovery of Genesis asteroid sample return [capsu](#page-0-0)le

[SmallSat Aerodynamics,](#page-0-0) ISSC 2014 2023

Spacecraft and Aerodynamics

Examples that are a little more relevant

SmallSat [Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0) [Aerobraking](#page-10-0) [And Titan](#page-13-0)

[Balloons](#page-18-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

←Aerobraking

(No picture?) (Very) low-altitude orbits See Mike Mullane's account of STS-36 *Riding Rockets: The Outrageous Tales of a Space Shuttle Astronaut*

Orbital decay

Unique SmallSat Aerodynamic Environments

Low-Heating Atmospheric Entry:

Ring Exploration: Transition to Floating Flight:

Atmospheres of the Solar System

Thank you, Voyager 2! Lindal, G. F. et al. "The Atmosphere of X: Analysis of Voyager Radio Occultation Measurements." 1981-19992

[SmallSat Aerodynamics,](#page-0-0) ISSC 2014 5/23

What can you do with small satellites in the upper atmosphere? Can you enter?

Alternatives for getting upper atmosphere data

Some favorable aspects of chip-scale atmospheric sensors

SmallSat [Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0) [Aerobraking](#page-10-0)

[Rings](#page-11-0)

[And Titan](#page-13-0)

[Balloons](#page-18-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

Spacecraft with "air-breathing" electric propulsion, balloons, remote sensing, larger entry probes

Advantages of chip-scale atmospheric entry sensors:

- Cheap and light; easy to get to other planets/moons
- Distributed *in situ* atmospheric measurements
- Greater risk tolerance: higher degree of failure may be allowable
- Provide indirect data just from their trajectory

What does entry look like for small (small == thin) spacecraft? Small mass like *O*(10 mg)

[Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0)

CmallCat

[Aerobraking](#page-10-0)

[And Titan](#page-13-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

Acceleration at max heating (*amax*) stays about constant

$$
m_{sc}a_{max} = \frac{1}{2}\rho_{atm}V^2A_{sc}C_D
$$

(*sc* = spacecraft, *atm* = atmospheric)

That means the atmospheric density (ρ*atm*) at which maximum heating occurs is proportional to the mass of the spacecraft.

The mass is about $m_{sc} = \rho_{sc} A_{sc} t_{sc}$ where t_{sc} is the thickness.

Max heating:

$$
\dot{q}_{max} \propto \rho_{atm} V^3 \propto t_{sc}
$$

Heating is proportional to spacecraft thickness.

Furthermore, it occurs at very low densities, *O*(10−⁸ kg/m 3)

What makes an atmosphere hard (or easy) to enter?

[Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0)

SmallSat

[Aerobraking](#page-10-0)

[Rings](#page-11-0)

[And Titan](#page-13-0)

[Balloons](#page-18-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

You might think that a thick atmosphere is helpful, but really that just means that everything happens at a higher altitude.

Initial velocity is the most important driver:

$$
V_{orbit} = R_{planet} \sqrt{\frac{g_{surface}}{R_{planet} + h}}
$$

Why does velocity mater so much for heating? $\dot{q} \propto \rho_{atm} V^3$

A planet's rotation can also be very important.

Especially for the gas planets (which [rota](#page-0-0)te really fast, ∼once per 10 hrs)

Results: chip-scale (1cm \times 1cm \times 0.032mm) Bank angle = 180° \implies lift force points down

SmallSat Aerodynamics, ISSC 2014 10/23

Aerobraking

[Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0)

SmallSat

[Aerobraking](#page-10-0)

[Rings](#page-11-0) [And Titan](#page-13-0) [Balloons](#page-18-0) [Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

Not particularly different from full-size spacecraft

Child spacecraft are more affected by aerobraking than motherships (usually)

One deployed earlier will slow down more

A single mother ship can deploy to a wide range of orbits during a single aerobraking pass

The SmallSats have little [control over thei](#page-0-0)r orbits, which will decay rapidly without a maneuver to raise the periapsis.

Ring Exploration

Unusual coupling between orbital mechanics and aerodynamics

[Rings](#page-11-0)

[And Titan](#page-13-0) [Balloons](#page-18-0) [Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

Saturn's rings are not ideal for such a maneuver.

Jupiter has rings that are not quite as interesting, but they may be safe to fly through.

Notwithstanding the radiation e[nvironment](#page-0-0)

Cassini will fly between Saturn and its innermost ring near the end of its life around 2017.

Using a polar orbit because an equatorial orbit would require the spacecraft to fly *through* the rings

Effects of Rings on Orbits

[Acknowledgments](#page-22-0)

Flying through rings has some surprising consequences

The most interesting is that the rings actually give you thrust if the spacecraft's apoapsis is in a ring

If you can withstand the dust environment

Note that rings make circular orbits

By actively controlling attitude, a lot can be done

For example, reducing cross-sectional area at periapsis

"Thrust" in the gossamer rings is small, around 10−⁵ *N* for a 3U

Titan is Really an Exception!

Why does it's atmosphere look like a gas planet's?

With the combination of lo[w gravity and an](#page-0-0) extremely spread-out atmosphere, some unique things are possible.

SmallSat Aerodynamics, ISSC 2014 14/23

Some Details of Titan's Atmosphere

And what it means for blurring the lines between spaceflight and aerodyanmics

Atmospheric Entry

Options available that wouldn't be elsewhere

Unusual 3U CubeSat Derivative

Important design parameters

CmallCat [Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0)

[Aerobraking](#page-10-0)

[And Titan](#page-13-0) [Entry](#page-15-0) [Balloons](#page-18-0) [Conclusions](#page-21-0)

- Center of gravity shifted to stabilize at nonzero angle of attack
	- Front of vehicle cut to increase *L*/*D*
	- Wing location and inciden[ce angle also impor](#page-0-0)tant
	- 0 If done properly little/no heat shielding needed

Example Trajectories – Surface Temperature Varying mass for Titan entry

SmallSat [Aerodynamics](#page-0-0)

Dalle

- [Introduction](#page-1-0)
- [Atmospheric Entry](#page-4-0)

[Aerobraking](#page-10-0)

[And Titan](#page-13-0)

[Entry](#page-15-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

- **•** Loosely optimized design with trimmed *L*/*D* of about 1.0
- Plot of surface temperature history as vehicle slows down

SmallSat Aerodynamics, [ISSC 2014](#page-0-0) 18/23

High-Altitude Inflatables

[Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0) [Aerobraking](#page-10-0) [And Titan](#page-13-0) [Balloons](#page-18-0)

SmallSat

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

Inflatable serves two purposes

Decreases ballistic coefficient

Provides bouyancy (this is a very unusual way to get *L*/*D*)

Eventually settles at an altitude with an atmospheric pressure below that of the balloon

Becomes a packaging and materials problem

Equilibrium Altitude

Long-Endurance Aircraft on Titan?

Probably not, but the aerodynamics are amenable

SmallSat [Aerodynamics](#page-0-0) Dalle

[Introduction](#page-1-0)

[Atmospheric Entry](#page-4-0)

[Aerobraking](#page-10-0)

[And Titan](#page-13-0)

[Balloons](#page-18-0)

[Aircraft](#page-20-0)

[Conclusions](#page-21-0)

[Acknowledgments](#page-22-0)

How much power would it require to stay in the air?

$$
P_R = \frac{C_D}{C_L} \sqrt{\frac{2W^3}{\rho_{\infty} SC_L}}\tag{1}
$$

That is, for a fixed aircraft, changing planet and atmosphere,

$$
P_R \propto \sqrt{\frac{g^3}{\rho_{\infty}}} \tag{2}
$$

A plane flying at "sea level" on Titan requires only 2.5% as much power as one on Earth

But there's no oxygen, and very little sunlight. Is the methane usable? Can [you have a glider](#page-0-0)?

Conclusions

[Aerodynamics](#page-0-0) Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0)

SmallSat

- [Aerobraking](#page-10-0)
- **[Rings](#page-11-0)**
- [And Titan](#page-13-0) [Balloons](#page-18-0)
- [Conclusions](#page-21-0)
- [Acknowledgments](#page-22-0)

- Small spacecraft can be subjected to an interesting variety of gas dynamic environments
- Some of them are unique, and others apply to all spacecraft
- Some result in new opportunities, such as reduced heat shielding to enter and explore the atmospheres of Solar System planets and moons
- Others could be useful based only on optimistic assumptions
- The more relevant conclusion is that these environments will impact the mission, and they must be taken into account during planning

Acknowledgments

- SmallSat **[Aerodynamics](#page-0-0)** Dalle [Introduction](#page-1-0) [Atmospheric Entry](#page-4-0) [Aerobraking](#page-10-0) **[Rings](#page-11-0)** [And Titan](#page-13-0) [Balloons](#page-18-0)
- [Conclusions](#page-21-0)
- [Acknowledgments](#page-22-0)

- Sara Spangelo, for talking me into making a talk for this conference
- Caltech, for hosting our event for the second time
- Gregory Josselyn at NASA Ames for helping me setup NASA Research Park as an alternate site (and thumbs down to the government shutdown for putting an end to this alternative).
- The rest of the committee for doing most of the work
- All the NASA authors whose public-domain images I used!