

CubeSats networks beyond Earth: advanced mission concepts for the support of the human exploration of Mars

Sabrina Corpino, Fabio Nichele, Nicole Viola (Politecnico di Torino) Sara Seager, Mary Knapp, Niraj Inamdar (MIT)

- Concept development: Interplanetary CubeSat mission - focus on Mars exploration
- Mission Architecture design method to evaluate Science Value throughout the design process
- International Collaboration: exchange program PoliTo - MIT 2014

CubeSat

Institute o

OI ITECNICO

CubeSat Team @ Polito: hands-on projects

CubeSat Team @ PoliTo: research

Institute of

OLITECNICO

CubeSat

Dependability analysis of small-satellite missions Methods to increase CubeSat mission reliability while maintaining the low-cost/fast-delivery approach Hardware-in-the-loop simulation **Mission Architecture: Methodologies and Tools** Verification and Testing of CubeSat Integration of small-satellites missions functionalities in a simulated with larger assets in a System of Systems framework environment **CubeSats beyond LEO** New paradigm **Technologies and Methods** for Space Mission Automation **Space Systems Conceptual** Autonomous operations for small we are here! Design satellite platforms Analysis methods for engineering-team support Technology for advanced CubeSats capabilities Methods for improvement of CubeSat performances PhD topics during last 5 years strong connection with CubeSat projects

Collaboration with MIT - EAPS

- Research collaboration: exchange program 2014
 - Enhance the science capabilities of CubeSats, by exploiting the synergies of two complementary research groups

Mechanical and Aerospace Engineering -PoliTo **Prof. Sabrina Corpino**

- PicPot
- e-st@r-l
- e-st@r-II
- 3-star

Earth, Atmospheric and Planetary Science - MIT *Prof. Sara Seager*

- CommCube 1 & 2
- ExoplanetSat
- TSat
- SOLARA/SARA
- CubeSat beyond LEO: generate a planetary exploration mission concept
- Evaluate the science value throughout the course of a Mission Architecture process

A network of CubeSats in support to the human exploration of Mars

Why human exploration of Mars?

- Well established robotic exploration program
- Scientific knowledge gaps exist, precursor activities and measurements needed in order to plan a human mission

Why CubeSats?

- unique features as distributed systems (constellations, swarms, networks)
 - simultaneous/shared sampling
 - massive science data return
 - staged deployment
- innovative concepts: enable us to imagine new ways to explore Mars we never thought before

EVOLVING SCIENCE STRATEGIES FOR MARS EXPLORATION

CubeSat

Mission Statement

end user?

Scientific Community, space mission planners, strategists, and designers who are/will be building the future human missions to Mars

added values?

innovative/unprecedented/visionary concepts constellations/swarms/distributed platforms
single-instrument multiple-units platforms
technology return for Earth-related applications

To establish a low-cost/fast-delivery space asset at Mars for filling the lack of knowledge on specific phenomena in the Martian orbit, atmosphere and on ground on regional/global scale, that may affect the future human exploration of the planet. To provide the scientific community with unprecedented measurements and data that

reduce the level of uncertainty to support the long term vision of human exploration of Mars

POLITECNICO

Mission Architecture: Science Value flow

Structured flow-down design process to generate baseline concept

• Science Value estimated through the overall process with utility metrics

Institute

Stakeholders and Program Goals

• Survey a broad range of documents

- Assembling a science+engineering team to derive science goals and priorities
 - First "brainstorming" session at MIT, Jan 2014
 - Design process at Politecnico di Torino, Mar-Jun 2014

OI ITECNICO

CubeSat

Science Goals Analysis

Strategic Knowledge Gaps

The gaps in knowledge needed to achieve a specific goal

Gap-Filling Activities

The works that contribute to closing a SKG

Example: upper atmosphere gap...

The current Martian atmospheric observations (density, pressure, temperature, aerosols and dynamics) have significant limitations for supporting aero-capture and aerobraking design, especially for human-scale missions

GFAs as defined b	y MEPAG - Goal IV
A1-1. Global temperature field.	B4-1. Electricity
A1-2. Global aerosol profiles and properties	B4-2. Dust physical, chemical and electrical
A1-3. Global winds and wind profiles	B4-3. Regolith physical properties and structure
A3-1. Orbital particulate environment	B5-1. Identify and map special regions
B1-1. Dust Climatology	B6-1. Dust physical, chemical and electrical properties
B1-2. Global surface pressure; local weather	B6-2. Dust column abundances
B1-3. Surface winds	B6-3. Trace gas abundances
B1-4. EDL profiles	B7-1. Regolith physical properties and structure
B1-5. Atmospheric Electricity conditions	B7-2. Landing site selection
B2-1. Biohazards	B7-3. Trafficability
B3-1. Neutrons with directionality	D1-3. Hydrated mineral compositions
B3-2. Simultaneous spectra of solar energetic particles in space and in the surface.	D1-4. Hydrated mineral occurrences
B3-4. Spectra of galactic cosmic rays on surface.	D1-5. Shallow water ice composition and properties
B3-5. Toxicity of dust to crew	D1-6. Shallow water ice occurrences

...and needed activities

- Global Temperature Field
- Global aerosol profiles and properties
- Global winds and wind profiles

Science Goals Analysis

	Goal	SKG	SKG name	GFAs															
Investigation 1A	Determine the append of the international state that affect averagines, Entry loging and Loading (EQ) and loading (EQ) and loading them the surface of the Mori. This includes the warbility on diurnal, seasonal and intere annual cales from ground to 400 Im in both ambient and valious dus torm conditions. The observations are to directly support engineering diagonal data to assist in manifect anded statisticals, especially the confidence level of the tail of dispersions (H995).	A1 B1	Upper atmosphere	A1-1. Global temperature field. A1-3. Global aerood profiles and properties. * A1-3. Global winds and wind profiles B1-3. Global surface pressure; local weather B1-3. Surface pressure; local weather B1-3. Surface winds B1-4. EDL profiles	1111				1	7									
Investigation 1B	Determine 11 the Morisis environments to Mic anticisate by horizons are fine, to within acceptable distances of the context of a second secon	82 85	Back contamination Forward contamination	82-1. Biothazards: High 85-1. Identify and map special regions	•]												
Investigation 2A	Daracterise the particulates that could be transported to bedware and initiatious of benefit the size of the the the clucking ratio at a dest and dest management. But could after any enserting participation and a the there. Avaries (table) redirective at the size of the size of the size of the performance pendicipation (and pendicipation) and and performance pendicipation (and pendicipation).	84 86	Dust effets on surface systems Atmospheric ISRU	properties properties 86-2. Dust column abundances										,	• * * * * * * *	A1-2. Glob A1-3. 0 A3-1. 0 B1-2. Glob B1-5. Ab	al aerosol profiles lobal winds and v toital particulate 81-1. Dust Climat al surface pressur 81-3. Surface wi 81-4. EDL profi rospheric Electric	s and properties wind profiles environment ology %; local weather inds lies chy conditions	
Investigation 2B	Determine the Marcian environmental riches that would neet the definition of "special tages". Exposite the second	85	Forward contamination	BS 1. Identify and map special regions	*											B3-1. -2. Simultanec 83-4. Spectr B3-4. Spectr 84-2. Dust phys 84-3. Repol?	w2-1. Bionazar Neutrons with di us spectra of sola pace and in the si of galactic cosmi 5. Toxicity of dust 84-1. Electrici cal, chemical and h physical proper	ex- rectionality r energetic part urface. ic rays on surfac ic rays on surfac to crew ty of electrical propu- ties and structu	icles in De. Serties
Investigation 3A	Determine the orbital particulate environment in high Mars orbit that may impact the delivery of cargo and crew to the Martian system.	A3	Orbital particulates	A3-1. Orbital particulate environment	*	۲		Ħ	F						*	 B5-1. Id B5-1. Dust phys B5-3 B6 B6 	entify and map sp cal, chemical and . Dust column ab 3. Trace gas abur	pecial regions Eelectrical propi undances ndances	erties
Investigation 3B	Characterize in detail the ionizing radiation environment at the Martian surface, distinguishing contributions from the energetic charged particles that penetrate the atmosphere, secondary neutrons produced in the atmosphere, and secondary charged particles and neutrons produced in the tregolith.	83	Crew Health and Performance	B3-4. Spectra of galactic cosmic rays on surface. B3-1. Neutrons with directionality B3-2. Simultaneous spectra of solar energetic particles in space and in the surface.	29. € K						f				*	87 D1-3. H D1-4. I D1-5. Shallow	-2. Landing site si B7-3. Trafficabi (drated mineral of lydrated mineral) water ice compos	election liby compositions occurrences ition and proper	rties
Investigation 3C	Determine the possible toxic effects of Martian dust on humans.	83	Crew Health and Performance	83-5. Toxicity of dust to crew	*					ť			[*	D1-6.5	hallow water ice	occurrences	
Investigation 3D	Characterize the properties of the martian regolith sufficiently to design systems that will land, work properly, and survive on the martian sarker. Analytic fidelity sufficient to establish crustible engineering simulation tand/or performation/design codes on Earth would be required.	87 84	Landing Site and Hazards Dust effets on surface systems	87-1. Regolith physical properties and structure 84-3. Regolith physical properties and structure	re e				╜										
Investigation 3E	Assess landing site-related hazards, including those related both to safe landing and safe operations within the possible area to be accessed by possible elements of a human mission.	87	Landing Site and Hazards	87-2. Landing site selection 87-3. Trafficability	*					t									
Investigation 4A	Access atmospheric electricity conditions that might affect Mars Take-off, Accent, and Othi- Insertion (MTAO) and human occupation.	81 84	Lower atmosphere Dust effets on surface systems	81-5. Atmospheric Electricity co. Second 84-1. Electricity	*					-									
Investigation 4B	Understand trace gas abundances and their potential to interfere with atmospheric SRU processing.	86	Atmospheric ISRU	B5-3. Trace gas abundances	6														
Investigation 5	Characterise potential key resources to support in Situ Resource Utilization (ISRU) for eventual human missions.	D1	Water resources	D1-3. Hydrated mineral compositions D1-4. Hydrated mineral occurrences D1-5. Shallow water ice composition and propertie D1-6. Shallow water ice occurrences	rties														

Map activities to investigations:

- Investigation are high-level science goals that enclose a set of GFAs
- One investigation can be driven by a single or multiple activities.
- *Single-activity-driven* investigations are attractive: (with few measurements one could completely address a specific goal and "maximize" scientific return)
- A *mission utility* definition is necessary to avoid premature prioritizing of uncertain / unfeasible / high-cost concept

SKG GFAs Upper Atmosphere Global Temperature Field Investigation Global aerosol profiles and properties Determine the aspects of the atmospheric SKG Global winds and wind profiles state that affect aerocapture, Entry Lower Atmosphere Dust climatology Descent and Landing (EDL) and launch • Global surface pressure from the surface of Mars. Surface Winds Example • EDL profiles

Mission Utility

- Need to narrow the focus on Investigations that maximize science value
 - Attributes selection: *priority + timing + fit*
 - High priority activities are those mitigating high risk or enabling critical needs
 - **Early timing** activities are those needed to in advance for planning an architecture of human missions to Mars orbit and surface
 - Good fit activities are those enabled by emerging capabilities of distributed small-satelites (e.g. simultaneous measurements capability, shared sampling)
 - Building an aggregate utility function and rank GFAs $U = \sum_{i=1}^{n} k_i U_i$

	Priority	v		
High	Recognized as an enabling critical need or mitigates high risk items	+		
Medium	Less definitive need or mitigates moderate risk items	-		
Low	Need uncertain or mitigates lower risk items			
	Timing			
IV-	Needed to plan human missions to Mars orbit	++		
IV Early	Needed to plan architecture of the first human missions to the martian surface	+		
IV Late	Needed to design systems for first human missions to the martian surface	-		
IV +	Needed for sustained human presence on the martian surface	_		
	Fit			
Good	Enabled by emerging capabilities of distributed small-satellites	++		
Medium	May be equivalently enabled by existing consolidated assets	+		
Poor	Do not match with the emerging capabilities of distributed small-satellites	_		

CubeSat

Mission Utility

- zones-of-interaction analysis shows highutility GFAs for surface, low atmosphere and orbit
- Activities with highest utility need measurements on global/regional scale
- Three different mission concepts can be explored: each showing high science value in the form of aggregated utility
- How can be traded-off with respect to CubeSats capabilities?

SMSD Project Work

• Space Missions and System Design master course, Mar-Jun 2014

Measurements

- 3 teams 3 Mission Concepts based on the 3 high-utility Investigations
 - 1. Atmosphere sounding
 - 2. Search for subsurface life/biohazard
 - 3. Micrometeoroids and dust belts hazards estimates
- complete the Mission Architecture process mapping measurements to candidate instruments
 Engineering feasibility and cost to be evaluated for final concept selection

Concept A: micrometeoroids and dust belts

Investigation	Determine the orbital particulate environment in high Mars orbit that may impact the delivery of cargo and crew to the Matian system
Activitiy	Orbital particulate
Measurements	Spectroscopy - Impact detection Imaging (optical-NIR)
Strategy	Remote Sensing - In-Situ analysis

- Human Exploration Support: reducing risk associated with delivery of crew to the Martian orbit
- **Engineering and Scientific relevance**: understanding size/ frequency distribution of micrometeoroids would help mission architecture planning and engineering design.

Goals

- To investigate the statistics distribution through the Martian year of Martian micrometeoroids mass, velocity, and composition
- Search for Martian dust rings and determine the spatial and particle size distribution, composition, origin, density, and their time evolution

Concept B: atmosphere sounding

Investigation	Determine the aspects of the atmospheric state that affect aerocapture, Entry, Descent and Landing					
Activitiy	EDL profiles					
Measurements	Temperature, Pressure and Density variations, Wind speed, Humidity					
Strategy	In-Situ analysis - Balloons					

- Human Exploration Support: provide the density information necessary to determine entry trajectories, atmospheric heating and deceleration rates. Precursor measurements necessary to reduce risk of loss of crew during EDL.
- Engineering and Scientific relevance: global scale validation of atmospheric numerical models

Goals

- To validate a global standard Martian atmosphere model.
- To study how lower atmosphere chemically interacts with martian surface and future mission equipment.
- To understand how the atmosphere protects Mars from the space environment.

Concept C: subsurface life - biohazards

Investigation	Determine if Martian environments to be contacted by humans are free of biohazards that might have adverse effects on the crew						
Activitiy	Biohazards						
Measurements	regolith composition - spectroscopy biomarkers detection						
Strategy	In-Situ analysis - penetrators						

- Human Exploration Support: reducing risks associated with direct exposure of human flight crew to surface environment
- **Engineering and Scientific relevance**: understanding if past/ present life existed/exists on Mars. Determine if airborne dust is a mechanism for transport of biohazards

Goals

- To study soil characteristics and chemical element composition
- To investigate liquid and/or water ice in the subsurface
- To look for biomarkers or biohazards

Future work

- Mission payload sets can be generated from a list of candidate instruments
- STM for assessing both missions and system engineering requirements
- Mission strategies (e.g. launch/ride-share, deployment, atmosphere entry/orbit insertion).
 Data delivery (communication strategy)
- Geometry definition (# spacecraft, swarm/constellation)

POLITECNICO DI TORINO

Conclusions

- A concept development can be a difficult task without a structured approach to the Mission Architecture process
- The top-down process from broad program goals to specific science objectives, investigation and measurements can reach a complex level of decomposition
- Stakeholder prioritization and custom utility metrics can help in narrowing the problem, focusing on the activities that maximize the Science Value of a proposed mission concept

- In this study the unique features of CubeSats as distributed systems have been evaluated against the need of precursor global measurements in advance to planning a human mission to Mars.
- At least three investigations for three different subjects (orbit, atmosphere, surface) seem to fit promisingly
- The engineering and technical **feasibility** of the three concepts will be addressed in a later step of the collaboration between PoliTo - MIT, along with the detailed definition of the 3 concepts
- The PoliTo CubeSat team is open to a debate on the topic and any proposed collaboration is welcome!

Thank you! twitter.com/CubeSatTeam facebook.com/CubeSatTeam • www.polito.it/cubesat-team WWW flick flickr.com/photos/cubesat-team/

POLITECNICO DI TORINO

CubeSat

Massachuse Institute of Technology