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o We can quickly determine a larger range of initial conditions leading to
halo orbits around the L1, by interpolating a smaller set of approximated
initial conditions.

*Develop station keeping strategy to maintain
constellation with as little energy as possible and relative
distances of 10km ~100km.

o Orbits closer to the

moon are much more
elliptical and smaller in
their movement relative
Introduction I to the Earth and Moon.

o Additionally, these curves allow us to examine us the local geometry near
the x-z plane to achieve a proper interspacing of the satellites .
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-Produce all-sky map in three bands between 30MHz and 30kHz below

with spatial resolution of at least 1 arcminute.

km in length.
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