#### **ISSC 2014**

Motivation Problem Approach Case 1 Case 2 Comparisons Summary

### Optimizing Orbit Transfer Time using Thrust and Attitude Control for a CubeSat with Interplanetary Applications

Moon

Sara Spangelo, NASA JPL/ Caltech Benjamin Longmier, University of Michigan Interplanetary Small Satellite Conference, April 2014

### How Far Can CubeSats Go (Alone)?

- Can CubeSats go beyond Low Earth Orbit (LEO)? Yes
  - Is there a fundamental size, mass, power, cost limitation? No!

### • Enabling factors:

- Miniaturized thruster technology (CAT) with high  $\Delta V$  capabilities
- Miniaturized attitude control technology (Blue Canyon's XB1)
- Heritage and experience operating CubeSats in LEO
- Optimal use of volume and mass, and scheduling of available energy and time





### Motivation

Problem Approach Case 1 Case 2 Comparisons Summary

## **Problem Objectives**

Last year we demonstrated the feasibility of escaping Earth orbit with the CubeSat Ambipolar Thruster (CAT) in a 3U CubeSat

#### **ISSC 2014**

#### This year we optimize trajectories and consider

- A variety of goals: minimizing time, fuel, volume, and radiation dosage
- Consider different maneuver schemes (i.e. spiral out, variable power/ time thrusts)
- Model energy balance (solar powered collection, eclipse)
- Model battery capacity (cycling, depth of discharge, degradation)

The goal of this work is to better understand the tradeoff between:

- The required fuel, batteries, and time to escape Earth orbit
- The risks with different schemes (i.e. due to battery cycling and radiation)



## **CAT:** Large $\Delta V$ Engine Capability

### CAT: CubeSat Ambipolar Thruster

- Uses high-density plasma source
- Achieves high  $\Delta V$  and high thrust/power
- Fits within small spacecraft form-factor (<0.1 U)
- Awarded a CSLI\* Launch on PATRIOT mission awarded in 2014
- Successful Kickstarter Campaign resulting in seed funding (\$100 K)
- Some commercial funding supporting tech development



Design of a 3U 3U CubeSat with CAT engine performing initial testing in Low Earth Orbit.

\*CSLI: NASA's CubeSat Launch Initiative

Photo Credit: PEPL

**ISSC 2014** 

### **Problem Assumptions**

•

- CubeSat Ambipolar Thruster (CAT)
  - Mass: <0.5 kg, Volume: 0.1U
  - Iodine fuel (I<sub>2</sub>), I<sub>sp</sub>=1010 sec, Density=5 g/cm<sup>3</sup>
  - Operating power levels: 3-300 W
  - 50-60% thruster efficiency
- **3U CubeSat Spacecraft Components** ٠
  - Blue Canyon XB1 Bus (GNC, C&DH, Telecom, Power, ACS)
    - Pointing: 7.2 arcsec accuracy, 1 arcsec stability, <2.5 kg, ~1 U, <2.5 W
  - Aluminum 3U CubeSat Structure
  - Deployable Solar Arrays (~30 W in sun)
  - Major subsystems (except fuel and batteries): ~3.3 kg, ~1.5 U (1.5 U remaining)
- Initial Orbit: 500 km circular, polar or near-polar •
- Nominal operations (all but CAT): ~3 W •



Clyde Space Double Deployed 2-Sided 30 W Solar Panels



ISIS 3U CubeSat Al Structure



XB1 Blue Canyon System

Image Credit: Clyde Space, ISIS, Blue Canyon, PEPL

CAT engine with CubeSat subsystems



5

**ISSC 2014** 

## **Multidisciplinary Approach**

Motivation Problem Approach Case 1 Case 2 Comparisons Summary

**ISSC 2014** 



We also analyze attitude control and radiation, but not as part of the optimization problem

### **Case 1: Constant Thrusting in Velocity Direction**





## **Case 1: Constant Thrusting in Velocity Direction**

#### Results given for orbit starting in 500 W circular orbit until Earth-escape (925,000 km)

| Constant Thrust<br>Power Values                                   | 10 W                  | 20 W                                               | 25 W                                               |
|-------------------------------------------------------------------|-----------------------|----------------------------------------------------|----------------------------------------------------|
| Fuel Quantity                                                     | 2.5 kg                | 2.5 kg                                             | 2.5 kg                                             |
| Time                                                              | 269 days              | 134 days                                           | 108 days                                           |
| Energetic Feasibility                                             | Feasible in any orbit | Only feasible in<br>(terminator)<br>sun sync orbit | Only feasible in<br>(terminator) sun<br>sync orbit |
| Number of Orbits                                                  | 1322                  | 681                                                | 545                                                |
| Total Accumulated<br>Ionizing Dose with<br>82.5 Mils after 1 year | 29.99 krad            | 15.01 krads                                        | 12.12 krads                                        |

- Considerable time savings to escape Earth with increased power values
- 10 W case is only feasible case for all orbits

**ISSC 2014** 

Motivation

Problem

Approach Case 1

Case 2

Summary

Comparisons

- 20-25 W cases feasible with sun sync orbits (unable to maintain enery balance)
- Alternative approach: increase power value as altitude increases (eclipse fraction decreases)



### **Case 1: Constant Thrusting for Sun Sync Orbits**

Starting from "worst-case" 500 km Sun Synchronous orbit ( $\beta \approx 60^{\circ}$ ), with 25 W power setting, altitude is boosted such that there is no eclipse (>750 km) in <3 days! Total Escape Time: 108 days, Total Escape Fuel: 2.5 kg

 $\beta^*$ : Angle between orbital plane and vector to Sun

**ISSC 2014** 

Motivation

Problem

Approach

Comparisons

**Summary** 

Case 1 Case 2

### **Case 1: What's the Impact of Attitude Control Errors?**

Results given for orbit starting in 500 W circular orbit until Earth-escape (925,000 km)

- Even with  $\gamma = 20^{\circ}$ , only requires an additional 13.1 days (10W)/ 5.2 days (25 W)
- Orbit shape and precession will also change with cross-track  $\Delta V$  component

#### **ISSC 2014**

Motivation Problem Approach Case 1 Case 2 Comparisons Summary

| Angular<br>Error (γ) | Actual/ Ideal<br>Thrust Ratio | Increase in Time<br>Constant Thrust (10 W) | Increase in Time<br>Constant Thrust<br>(25 W) |
|----------------------|-------------------------------|--------------------------------------------|-----------------------------------------------|
| 1º                   | 0.9998                        | 0.02%                                      | 0.02%                                         |
| 5°                   | 0.9962                        | 0.4%                                       | 0.4%                                          |
| 10 <sup>o</sup>      | 0.9848                        | 1.5%                                       | 1.5%                                          |
| 20°                  | 0.9397                        | 6.4%                                       | 6.4%                                          |



Actual Thrust Vector

**Ideal Thrust Vector** 

## **Case 2: Problem Description**



This approach may be more (time and fuel) efficient relative to the constant thrust approach (Case 1).

## **Case 2: Optimization Problem Formulation**

Goal: Find the trajectory to minimize time to escape Earth's sphere of influence (radius: 925,000 km) by thrusting for a short time once per orbit, centered at perigee.

#### **ISSC 2014**

Motivation

Problem

Approach

Case 1

Case 2

**Summary** 

Comparisons

Decisions: Power setting and duration during each maneuver (once per orbit at perigee)

#### Constraints:

- Thruster power settings (2-300 W)
  Battery capacity constrains availab
  - Battery capacity constrains available energy
    - Battery depth of discharge, battery degradation
  - Positive energy balance throughout each orbit
  - Maximum volume for fuel + batteries = 1.5U
    - Ideally want to minimize volume

#### Dynamics:

- Propulsion:
  - Mass flow rate is linearly related to power setting
  - $\Delta V$  computed by rocket equation based on current mass, mass flow rate
- Orbit: Conservation of angular momentum and energy to compute apogee boost
- Energy: Model realistic collection and consumption (solar, nominal, thrust)

Inputs: Initial altitude, solar panel and nominal power, initial dry/ fuel mass



### **Case 2: Model Insights from Sensitivity Analysis**



Summary: Multiple advantages of thrust maneuvers "later" in mission, but must first get to higher altitudes!

# **Case 2: Optimal Solutions**

- Problem solved using MATLAB's *fmincon* and **feasible** initial conditions
- Minimum time to escape Earth orbit
  - Optimal ~174 days: require ~1.15 U volume (~30 batteries)
  - All solutions require 1.34 kg fuel ~ 0.27 U (~1.4 U total for fuel + batteries)
  - All solutions require 720-740 battery cycles
- Comparison to Case 1 (10 W): 35% reduction in time, and 46% reduction in fuel
- Comparison to Case 1 (25 W, sun sync): 62% longer, and 46% reduction in fuel



ISSC 2014

### **Case 2: Verification & Visualization**

Solutions verified in System's Tool Kit (STK) with Astrogator Tool

• Results similar for Case 1 (10 W): Earth-escape in ~178 days with 1.6 kg fuel

**ISSC 2014** 

Motivation Problem Approach Case 1 Case 2 Comparisons Summary



Red shows thrust/ Green shows cruise

## **Case 2: Realistic Battery Degradation**

- In reality, 18650 Li-Ion batteries degrade with increased number of cycles
- Case 3: Same optimization approach as Case 2 with realistic battery degradation



- Optimal solution: ~171 days, ~30 batteries (~1.15 U), ~1.36 kg fuel required, 171
  - Nearly identical to Case 1 with constant thrust
- Solutions don't deplete 100% battery capacity every cycle (degradation conservative)

Reference: Panasonic Spec Sheet

# **Case 1 and 2: Radiation Effects**

- Total Accumulated Radiation Dosage measured with STK's SEET\*
- Case 1 spends more time in radiation belts than Case 1

**ISSC 2014** 

Motivation Problem Approach Case 1 Case 2 Comparisons Summary



Case 1: Constant Thrust in Velocity Direction (10W)

Case 2: Optimized Variable Thrust/Time at Perigee

Red shows thrust/ Green shows cruise

\*SEET: Space Environment and Effects Tool

# **Case 1 and 2: Radiation Effects and Mitigation**

**Summary** 

|                                 | Accumulated radiation dosage after one year mission (starting 500 km orbit) |                                   |                                   |                                       |  |
|---------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|--|
|                                 | Aluminum shielding                                                          | (                                 | Case and Description              |                                       |  |
| ISSC 2014                       | thickness                                                                   | Case 1: Constant<br>Thrust (10 W) | Case 1: Constant<br>Thrust (25 W) | Case 2: Variable<br>Thrust at Perigee |  |
|                                 | 82.5 Mils (2.1 mm)                                                          | 30.0 krad                         | 12.1 krad                         | 8.9 krad                              |  |
| Motivation                      | 232.5 Mils (5.9 mm)                                                         | 3.9 krad                          | 2.0 krad                          | 1.0 krad                              |  |
| Problem                         | 457.5 Mils (11.6 mm)                                                        | 2.2 krad                          | 1.1 krad                          | 0.6 krad                              |  |
| Case 1<br>Case 2<br>Comparisons | Predicted Al thickness<br>for Accumulated<br>Dosage <5 krad*                | 5.5 mm                            | 4.5 mm                            | 3.5 mm                                |  |

- CubeSat components shown to fail between 5-10 krad\* ٠
- Radiation effects can be mitigated by enclosing sensitive chips • with Al or other protection schemes
  - e.g. 3D-printed custom radiation protection solutions



Tether Unlimited's Radiation Shielding



ISIS 3U CubeSat Al Structure

## **Comparison of All Cases**

Solutions represent "best" of each case that is energetically feasible, ~1.15 U of batteries

**ISSC 2014** 

Motivation Problem Approach Case 1 Case 2 Comparisons Summary

| Parameter                                                                   | Case 1                                    | Case 2                                                                   |
|-----------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|
| Maneuver Approach                                                           | Thrust continuously in velocity direction | Variable thrust magnitude and duration at perigee                        |
| Battery Modeling                                                            | 80% DoD, no degradation                   | 80% DoD, no degradation/<br>100% DoD, realistic<br>degradation per cycle |
| Thrust Power Level                                                          | 10 W (sun sync)/ 25 W                     | Variable (50-300 W)                                                      |
| Thrust Time                                                                 | Constant                                  | Variable (1-60 min)                                                      |
| Earth Escape Fuel                                                           | 2.50 kg                                   | 1.34 kg/ 1.36 kg                                                         |
| Fuel & Battery* Volume (1.5 U available)                                    | 2.5 kg, 0.5 U                             | 2.84 kg, 1.4 U                                                           |
| Earth Escape Time                                                           | 269 days/ 108 days                        | 175 days/ 171 days                                                       |
| Number of Orbits                                                            | 1322/ 545                                 | 720/701                                                                  |
| Total Accumulated Ionizing<br>Dose with 232.5 Mils (5.9 mm)<br>after 1 year | 3.90 krad/ 1.96 krad                      | 1.03 krad                                                                |

\*Additive relative to those in XB1 CubeSat Bus (25 Whr)

## **Optimal Solutions for Different Goals**

Cases start in 500 km circular orbit until they escape Earth's SOI (975,000 km)

| <b>ISSC</b> | 2014 |
|-------------|------|
|             |      |

| Motivation  |
|-------------|
| Problem     |
| Approach    |
| Case 1      |
| Case 2      |
| Comparisons |
| Summary     |
|             |

| Optimization<br>Goal                       | If you can achieve sun sync<br>orbit                                         | If you can't achieve sun sync<br>orbit                                           |  |
|--------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Minimize Time                              | Case 1: Thrust continuously in velocity direction (25 W)-<br><b>108 days</b> | Case 2: Variable thrust<br>magnitude and duration at<br>perigee- <b>175 days</b> |  |
| Minimize Fuel                              | Case 2: Variable thrust magnitude and duration at perigee- 1.34 kg           |                                                                                  |  |
| Minimize Fuel<br>& Battery<br>Mass/ Volume | Case 1: Thrust continuously in velocity direction (11 W)-<br>2.5 kg/ 0.5 U   | Case 1: Thrust continuously in velocity direction (25 W)-<br>2.5 kg/ 0.5 U       |  |
| Minimize<br>Radiation                      | Case 2: Variable thrust magnitude and duration at perigee- 1.03 krad         |                                                                                  |  |

#### Summary:

- Case 2 is appealing for time-optimal solutions (when not sun-sync)
- Case 2 is attractive to reduce fuel and reduce radiation exposure
- Case 1 always requires less total battery mass and volume

### **Additional Challenges and Future Work**

### Additional Mission Design Challenges

- Power system upgrades to manage higher power values
- Thermal issues with high-powered thrusts
- Communication throughout mission- power, pointing at large ranges
- Attitude control errors impacting trajectory and efficiency
- Radiation-mitigation strategies

### Future Work

- Model power, thermal, radiation, and attitude control in optimization problem
- Consider higher-fidelity orbit transfer models
- Analyze other orbit transfers and destinations
  - Lunar flybys, transfers to Moon, Mars, and beyond...



### ISSC 2014

## **Back-up Slides**

### **How Much Mass Is Needed?**

### Work through Rocket Equation for $I_2$ fuel and CAT

| Parameter           | Symbol          | Input/ Equation                                         | Value              | Units  |
|---------------------|-----------------|---------------------------------------------------------|--------------------|--------|
| Specific Impulse    | I <sub>sp</sub> | Input                                                   | 1010 <sup>لا</sup> | sec    |
| Exhaust Velocity    | $V_{exh}$       | $V_{exh} = I_{sp} \cdot \mathbf{g}$                     | 9908               | km/sec |
| Dry Spacecraft Mass | $m_s$           | Input                                                   | 2.5                | kg     |
| Propellant Mass     | $m_p$           | Input                                                   | 2.5                | kg     |
| Initial Mass        | $m_i$           | $m_i = m_s + m_p$                                       | 5.0                | kg     |
| Final Mass          | $m_f$           | $m_f = m_s$                                             | 2.5                | kg     |
| Delta V Capability  | ΔV              | $\Delta V = V_{exh} \ln \left( \frac{m_i}{m_f} \right)$ | 7.0                | km/sec |
|                     |                 |                                                         |                    |        |

Ideal Rocket Equation

We can escape Earth's Sphere of Influence ( $\Delta V \sim 7 \text{km/sec}$ ) with  $\sim 2.5 \text{ kg of fuel!}$ 

g: gravity constant =  $9.81 \text{ m/sec}^2$ 

### **Case 1 and 2: Properties of Solutions**



## **Case 2: Properties of Optimal Solutions**



