

CubeSat Based Inflatable Antennas and Structures for Interplanetary Communication and Tracking

Mithun Ravichandran and Jekan Thanga

Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory School of Earth and Space Exploration (SESE) Arizona State University http://space.asu.edu

Interplanetary Cubesats

Case Study

- Parabolic antenna (f/d = 0.5)
- Data rate = 128 Kbps
- Frequency = 2.45 Ghz [S-band]
- Lunar Orbit

Deployment Comparison

Parameter	Non-deployable Antenna	Deployed Antenna	
Distance	384,300 km [Moon]	384,300 km [Moon]	
Data Rate	128 Kbps	128 Kbps	
Frequency	2.45 Ghz [S-band]	2.45 Ghz [S-band]	
Ground Station Antenna Diameter	2 m	2 m	
Spacecraft Antenna Diameter	0.09 m	2 m	
Data Link Margin	4.27 dB	17.9 dB	
Spacecraft Power for Communications	50~ W	2.5 W	

Motivation

 Inflatable offer a promising technology pathway for interplanetary CubeSat communication and tracking.

- Very high deployed volume
- Very low mass
- High-packing efficiency
- Quick deployment
- Relative simplicity

Objectives

Research inflatable technology that maximizes stowed-to-deployed ratio of interplanetary communication antennas and long-distance tracking devices.

- Understand the limits
- Develop validated physical models
- Determine design principles
- Develop open-source rigidizable inflatable design and optimization tools for system engineers.

Inflatables

Communication Relays

Inflatable

Hypersonic Decelerator

Radio Telescopes

ARISE NASA /JPL

Related Work

Inflatable Antenna Experiment (1996) [NASA/JPL/LGarde]

[Steiner, Freeland, Veal, 1996] First large-scale inflatable antenna 14 m diameter, canopy and torus mylar/kevlar structure, mass: 60 kg Nitrogen gas for inflation

NASA/JPL/LGarde

Inflatable antenna for Cubesats [Babuscia et al., 2013] First proposed design for cubesat Sublimating powder maintains inflatio Target Capability: 100 kbps from GEO

[Babuscia et al., 2013]

Related Work

Origami Structures for Space [BYU & JPL, 2013] [Zirbel et al., 2013] Rigid structures that can unfold using origami techniques Solar Panel Deployment Can these techniques be applied for inflatables ?

Challenges

- Micro-meteorites
 - Rigidization [Cadogan and Scarborough, 2001]
 - UV, Stretched Aluminum, Passive Cooling
 - Sublimating Powder [Babuscia et al., 2013]
- Fabric Strength [Freeland et el., 1997], [Cadogan and Scarborough, 2001]
 - Laminates, Thermosetting Materials, Vectran
- Packing density and Deployment
 - Simple folding techniques, origami structures for space [Zirbel et al., 2013]
 - Repeatability and Reliability

Inflatable Advantage

Material	Mass	Proposed System Advantage
Al 6065-T4	34 kg	84x
Ti-6Al-4V	14 kg	35x
Nomex Al Honeycomb	12 kg	31x
Benecor Ti Honeycomb	5 kg	13x
Proposed Kapton UV Cured Inflatable	0.4 kg	-

Inflatable System Design

Subsystem Component	Mass		
Spark-plug, electronics	50 g		
Battery Power Supply	125 g		
Sodium Azide Canister	50 g		
Sodium Azide	100 g		
and the second			
Rib and Torus Bladder	25 g		
Reflector Membrane	50 g		
Total	400 g		

Deployment Steps

"Accordion" Folds

"Radial Accordion" Folds

Unfurl from a spiral roll.

Origami Deployment

Deployment Techniques - Comparison

	Method	Folds	Short Folds	Deployment Time	Stowed Volume	Deployed/ Stowed Volume
1	Exponential - Short Folds	10	10	50 s	0.7 L	110
2	Square - Accordion + Short Folds	31	11	140 s	0.9 L	90
3	Radial - Accordion + Short Folds + Roll	37	1	160 s	0.8 L	100
4	Square - Accordion Folds	40	0	180 s	0.9 L	90
5	Origami - Basic	75		170 s	0.5 L	150

Techniques need to be experimental validated.

Discussion

- Significant potential at least 10 to 30 folds mass advantage over conventional structures
- All the deployment techniques considered are tricky
 - Minimize short-folds
 - Preference for (1) rolling (2) accordion folds
 - Rolling Spacecraft spin
 - Accordion folds spring or shape memory
- Feedback control required to guarantee unfolding
 - Rolling Can be started and stopped, repeated
 - Linear unfolding shape memory process could be repeated in theory but can get in the way

Future Work

- Details simulation of deployment dynamics
- Identification of preferred deployment technique
- Laboratory demonstration of concept
- A controls approach to increase reliability of deployment system with options for redundancy.
- Flight demonstration 2015/2016

Thank You!

References

Roederer, A. "Historical overview of the development of space antennas." Space Antenna Handbook (2012): 250-313.

Melancon, P. S., and R. D. Smith. "Fleet Satellite Communications (FLTSATCOM) Program." 8th Communications Satellite Systems Conference. Vol. 1. 1980.

Rahmat-Samii, Y., A. I. Zaghloul, and A. E. Williams. "Large deployable antennas for satellite communications." *Antennas and Propagation Society International Symposium, 2000. IEEE.* Vol. 2. IEEE, 2000.

Campbell, T. G., et al. "Development of the 15-meter hoop-column antenna system." In its Large Space Antenna Systems Technol., 1984 p 167-212 (SEE N85-23813 14-15) 1 (1985): 167-212.

Bernasconi, Marco C., and Giuseppe G. Reibaldi. "Inflatable, space-rigidized structures. Overview of applications and their technology impact." Acta Astronautica 14 (1986): 455-465.

Cassapakis, Costa, and Mitch Thomas. "Inflatable structures technology development overview." AIAA paper (1995): 95-3738.

Freeland, R. E., et al. "Large inflatable deployable antenna flight experiment results." Acta Astronautica 41.4 (1997): 267-277.

Thomson, Mark W. "The Astromesh deployable reflector." Antennas and Propagation Society International Symposium, 1999. IEEE. Vol. 3. IEEE, 1999.

Rogers, C. A., et al. "Technology assessment and development of large deployable antennas." Journal of Aerospace Engineering 6.1 (1993): 34-54.

Cadogan, David P., and Stephen E. Scarborough. "Rigidizable materials for use in gossamer space inflatable structures." *ALAA paper* 1417 (2001): 2001.

Babuscia, Alessandra, et al. "Inflatable antenna for cubesats: Motivation for development and antenna design." Acta Astronautica 91 (2013): 322-332.

Babuscia, Alessandra, et al. "CommCube 1 and 2: A CubeSat series of missions to enhance communication capabilities for CubeSat." *Aerospace Conference, 2013 IEEE*. IEEE, 2013.

Schenk, M., et al. "Inflatable Cylinders for Deployable Space Structures."

Zirbel, Shannon A., et al. "Accommodating Thickness in Origami-Based Deployable Arrays." Journal of Mechanical Design 135.11 (2013): 111005.