

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration

Payam Banazadeh (JPL/Caltech) Andreas Frick (JPL/Caltech)

EM-1 Secondary Payload Selection

- 19 NASA center-led concepts were evaluated and 3 were down-selected for further refinement by AES toward a Mission Concept Review (MCR) planned for August 2014
- Primary selection criteria:
 - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs)
 - Life cycle cost
 - Synergistic use of previously demonstrated technologies
 - Optimal use of available civil servant workforce

Payload VASA Centers	Strategic Knowledge Gaps Addressed	Mission Concept		
BioSentinel ARC/JSC	 Human health/performance in high- radiation space environments Fundamental effects on biological systems of ionizing radiation in space environments 	Study radiation-induced DNA damage of live organisms in cis- lunar space; correlate with measurements on ISS and Earth		
Lunar Flashlight JPL/MSFC/MHS	 Lunar resource potential Quantity and distribution of water and other volatiles in lunar cold traps 	Locate ice deposits in the Moon's permanently shadowed craters		
Near Earth Asteroid (NEA) Scout MSFC/JPL	 NEA Characterization NEA size, rotation state (rate/pole position) How to work on and interact with NEA surface NEA surface mechanical properties 	Slow flyby/rendezvous and characterize one NEA in a way that is relevant to human exploration		

EM-1: Near Earth Asteroid (NEA) Scout

concept

WHY NEA Scout?

- Characterize a NEA with an imager to address key Strategic Knowledge Gaps (SKGs)
- Demonstrates low cost reconnaissance capability for HEOMD (6U CubeSat)

LEVERAGES:

- Solar sail development expertise (NanoSail-D, Sunjammer, LightSail-1)
- CubeSat developments and standards (INSPIRE, University & Industry experience)
- Synergies with Lunar Flashlight are in review (Cubesat bus, solar sail, communication system, integration & test, operations)

MEASUREMENTS: NEA volume, spectral type, spin mode and orbital properties, address key physical and regolith mechanical SKG

- ≥80% surface coverage imaging at ≤50 cm/px
- Spectral range: 400-900 nm (incl. 4 color channels)
- ≥30% surface coverage imaging at ≤10 cm/px

Key Technical Constraints:

- 6U Cubesat and ~80 m² sail to leverage commonalities with Lunar Flashlight, expected deployer compatibility and optimize cost
- Target must be within ~0.5 AU distance from Earth due to telecom limitations
- Slow flyby with target-relative navigation on close approach

WHY Lunar Flashlight?

- Recent robotic mission data (Diviner, Mini RF, LCROSS) strongly suggest the presence of ice deposits in permanently shadowed craters
- Look for ice deposits and identify favorable locations for in-situ extraction and utilization
- SKG Understand the quantity and distribution of water and other volatiles in lunar cold traps

LEVERAGES:

- Solar sail development expertise (NanoSail-D, Sunjammer, LightSail-1)
- CubeSat developments and standards (INSPIRE, Morehead State University & Industry experience)
- Synergies with NEA Scout (CubeSat bus, solar sail, communication system, instrument, integration & test, operations, are in review)

MEASUREMENTS: Lunar ices (water, methane, ammonia, and carbon dioxide) trapped in permanently shadowed cold craters

 high-resolution spectra in the 3-µm region during nighttime at all latitudes could help solve problem of thermal contamination of existing near-IR (M³, etc.) spectra

Key Technical Constraints:

 6U Cubesat and ~60-90 m² sail to leverage commonalities with NEA Scout, 30W, expected deployer compatibility and optimize cost

SLS Integration

- Notional Launch on SLS EM-1 (Dec. 2017)
- Secondary payloads will be integrated on the MPCV stage adapter (MSA) on the SLS upper stage.
- Secondary payloads will be deployed on a trans-lunar trajectory after the upper stage disposal maneuver.

NEA Scout Flight System Overview

Bus: JPL Deep Space NanoSat Bus (based on INSPIRE) Propulsion: MSFC ~80 m² Solar Sail (based on NanoSail-D) Payload: COTS NEA Imager, e.g. MSSS ECAM M-50 Command & Data Sys.: Radiation tolerant LEON3 architecture Attitude Control: 3-Axis Control (Zero-momentum spin cruise) Electrical Power: ~35W (@1 AU) with gimbaled solar panels Telecom: JPL Iris, Inspire LGA (2 Pair) + Microstrip Array HGA (>1 kbps @ 0.25 AU to 34m DSN)

Cold Gas Prop

LF Flight System Overview

Mission: Locating ice deposits in the Moon's permanently shadowed craters

Approach: "6U" Solar-Sail Propelled CubeSat (<12 kg) **Launch Opportunity:** SLS EM-1 (Dec 2017 notional launch)

Bus: JPL Deep Space NanoSat Bus (leveraging INSPIRE) **Propulsion:** MSFC ~80 m² Solar Sail (based on NanoSail-D)

Payload: COTS 4-band spectrometer

C&DH: Rad Tolerant LEON-3 architecture, JPL Protos FSW

ADCS: COTS Cold Gas, RWA, SRU, IMU, CSS

Power: ~30W with gimbaled solar panels

Telecom: JPL Iris X-Band Transponder + Patch Antenna

(~1 kbps nominal @ Lunar Distance with Morehead State)

AustinSat Cold Gas Volu

NEA Scout ConOps Summary

Lunar FlashLight ConOps

1. Jan 2010 13 840 858.000

* * *

1

- Several potential NEA Targets exist between 2017 and 2021
 - Times and rendezvous distances are approximate pending solar sail design, launch conditions (time and trajectory), and trajectory optimization
 - Mission duration can be a challenge, especially given limitations of hosted payloads (no choice of launch date and initial trajectory)
 - Assumes deployment on trans-lunar trajectory with small cold gas maneuver (~10 m/s) to target lunar flyby, 12 kg spacecraft mass, and 80-90 m² solar sail
 - High OCC targets may require complementary observations by ground-based or orbiting assets to further constrain target location prior to rendezvous

Name	Minimum Time of Flight (2017- 2021)	Time of Flight for Notional Launch (Dec. 2017)	Rendezvous Distance from Earth	Abs. Mag	30% albedo Dia. (m)	5% albedo Dia. (m)	Orbit Condition Code	Observation Opportunity before launch?
1991 VG	<1.5 years	~1.5 years	~0.5 AU	28.5	5	12	2	YES (optical)
2001 GP2	<2 years	~2.5 years	0.2-0.05 AU	26.9	10	25	6	After 2019?
2007 UN12	<1.5 years	>3 years	0.25-0.1 AU	28.7	4	11	4	No
2008 EA9	<1.5 years	~3 years	0.25-0.1 AU	27.7	7	17	5	No
2012 UV136	~2.5 years	~3 years	0.5-0.01 AU	25.5	19	47	1	YES (optical/radar)

Solar Sail Development History

NEA Scout

Lunar

Flashlight

3.5-m NanoSail-D2 (2010)

20-m ground demo (2005)

12

Solar Sail Design

Size comparison

ACS Architecture

Initial delta-V burn

- Contribution to the CubeSat Community
 - Long-lived CubeSat bus for deep space missions (C&DH, EPS, ADCS, Deep Space Transponder)
 - Further characterization of deep space environment effects on CubeSats (building on INSPIRE)
 - First science-grade observations of solar system objects
 - Mature CubeSat Solar Sail propulsion

• Future Potential of Small Missions for Big Science

- Secondary spacecraft hosted on interplanetary missions
- Both NEA Scout and Lunar Flashlight could be repeated to characterize additional NEAs or increase coverage of lunar ices (possibly with different, complementary payloads)
- Other solar sail applications (e.g. Space Weather Monitoring constellation at Lagrange Points)