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A Unique Launch Opportunity

• NASA Advanced Exploration 
Systems (AES) is sponsoring 3 
secondary payload slots on the 
first flight of the Space Launch 
System (SLS)

• Secondaries will be deployed 
into a heliocentric orbit after 
separation of Orion CEV

• Baseline design constraints 
allow for 6 cube volume and 
~14 kg mass
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Artist’s rendering of the Space 
Launch System
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3 Distinct Missions
• Marshall Spaceflight Center, Jet 

Propulsion Laboratory, and 
Ames Research Center are 
supplying spacecraft

• MSFC NEAScout will inspect a 
NEA target, JPL LunarFlashlight
will explore permanently 
shadowed craters on the 
moon, and Ames BioSentinel
will characterize radiation 
environment 

5

A visualization of one possible formulation of 
a 6U spacecraft to be used for the BioSentinel

mission
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Where CubeSats Haven’t Gone Before
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• Exact deployment orbit of 
secondaries still being 
characterized
– Possible requirement for ΔV 

maneuver

• Will likely be Earth-trailing, 
heliocentric orbit

• Far outside the orbits 
typically occupied by 
CubeSats A representative orbit that the BioSentinel

spacecraft could occupy
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MISSION OVERVIEW
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Valuable Access to the Space Environment

• The space radiation environment 
cannot be duplicated on Earth, 
making research into its effects 
challenging

• BioSentinel will measure a 
specific type of DNA damage 
resulting from exposure to this 
environment

• Laboratory-engineered yeast cells 
will sense and repair direct 
damage to their DNA 
– Specific damage is so-called double-

strand breaks
– Gene repair will initiate cell growth in 

microwells within payload volume 8
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Foundational Research for Future Missions

• Ionizing radiation presents a major 
challenge to human exploration of 
deep space
– Specific deleterious effects of long-

term exposure are unknown
• Challenging to replicate deep space 

radiation environment on Earth, 
particularly with SPEs

• Eukaryotic yeast cells are a valuable 
analogy for future manned missions

• BioSentinel will provide insight into 
shielding strategies and radiation 
countermeasure development
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Visualization of the BioSentinel biology 
microwell stack-up
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Building on Ames Heritage
• Ames has previously flown 

biologically-focused CubeSats
with the GeneSat, PharmaSat, 
and O/OREOS missions

• Spacecraft make use of 
miniaturized life support systems 
to allow for growth of cells in 
microgravity environment

• BioSentinel will leverage this 
heritage to build three separate 
payloads:
– Flight payload, module that can be 

integrated with ISS, and ground 
control
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The PharmaSat 3U spacecraft, which carried a 
microwell and fluidics system similar to that 

which will be used in BioSentinel
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Bonus Payload: Radiation Sensor

• In addition to biology payload 
BioSentinel will fly a stand-alone 
radiation sensor to provide 
direction measurement of galactic 
cosmic radiation

• Requires linear energy transfer 
detection and integrating dosimetry
(TID) capability

• Future design work related to type 
of sensor and implementation, 
integration with spacecraft bus

• Collaboration with JSC RadWorks
group
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The TimePIX linear energy transfer detector 
chip
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• First 6U CubeSat to fly beyond 
LEO

• First CubeSat to combine both 
active attitude control and a 
biology science payload

• First CubeSat to integrate a 
propulsion subsystem for 
momentum management and 
(possibly) ΔV

• First CubeSat to integrate a third-
party deployable solar array
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A Wide Range of 6U “Firsts” for Ames

Major BioSentinel subsystems shown with 
rough order-of-magnitude volume budgets
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SPACECRAFT CONCEPT
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Current design concept for the BioSentinel Spacecraft
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Environmental Considerations

15

• Higher exposure to radiation than experienced by 
previous CubeSats operating in LEO
– Approximately 5 kRad total ionizing dose anticipated
– Non-destructive single events (such as SEUs) motivate > 20 

MeV-cm2 tolerance, destructive single events (SELs, SEBs) 
require > 37 MeV-cm2 tolerance

• Distance from Earth eliminates use of GPS for position 
determination, magnetometers for attitude 
determination, or torque coils/rods  for attitude control

• Solar radiation pressure will be largest disturbance 
torque
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Subsystem Considerations
• Deployable solar panels required 

to generate sufficient power for 
all subsystems

• Traditional CubeSat S-band/UHF 
radios insufficient at mission 
operating orbit
• X-band under consideration for 

up and down communications
• Propulsion required for both 

detumble and momentum 
management

• Biology must be maintained at a 
specific temperature and 
acceleration range
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Candidate components under consideration 
for the BioSentinel mission
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Communications Challenges
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Avionics Challenges
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• BioSentinel will require a command and data handling (C&DH) 
system that is much more capable than previously flown in 
CubeSat-class spacecraft

• Simultaneously would like fairly inexpensive development 
boards for prototyping and testing campaigns

• Radiation tolerance of high importance
– Radiation-hardened or phase-change memory, watchdogs, multiple or 

“golden” software loads, etc

• Implications for GNC development strategy: auto-coding vs. 
hand-coding  control schemes, schedulers, etc
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A representative mode transition diagram for the BioSentinel
mission
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DESIGN CHALLENGES/
FUTURE WORK
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BioSentinel

• Tip-off conditions from SLS are a major unknown
– Initial body-fixed rates, potential need for a ΔV maneuver

• Tip-off conditions help to define GNC system needs, which will drive other 
subsystem budgets

• Detailed power budget assessment: ~30 W orbit-average power should 
allow for radio to be always on
– As opposed to traditional CubeSat missions in which subsystem cycling 

sometimes required
• Need to define ground operations strategy

– DSN likely the most feasible approach, issues with availability and cost
– 34m likely acceptable for majority of mission life, larger array required 

at end of mission
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QUESTIONS?
MATTHEW.C.SORGENFREI@NASA.GOV
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http://nasa.gov
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BACK-UP SLIDES
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Location in Lunar Centered Space
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Radiation Environment
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Total Ionizing Dose
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CFE/CFS Layered Architecture

• Each layer “hides” its 
implementation and technology 
details.

• Internals of a layer can be 
changed -- without affecting other 
layers’ internals and components. 

• Enables technology infusion and 
evolution.

• Doesn’t dictate a product or 
vendor.

• Provides Middleware, OS and HW 
platform-independence.
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